3.439 \(\int \cos ^2(c+d x) (a+b \cos (c+d x))^4 \, dx\)

Optimal. Leaf size=235 \[ -\frac {\left (4 a^2-25 b^2\right ) \sin (c+d x) (a+b \cos (c+d x))^3}{120 b d}-\frac {a \left (4 a^2-53 b^2\right ) \sin (c+d x) (a+b \cos (c+d x))^2}{120 b d}-\frac {a \left (4 a^4-121 a^2 b^2-128 b^4\right ) \sin (c+d x)}{60 b d}-\frac {\left (8 a^4-178 a^2 b^2-75 b^4\right ) \sin (c+d x) \cos (c+d x)}{240 d}+\frac {1}{16} x \left (8 a^4+36 a^2 b^2+5 b^4\right )+\frac {\sin (c+d x) (a+b \cos (c+d x))^5}{6 b d}-\frac {a \sin (c+d x) (a+b \cos (c+d x))^4}{30 b d} \]

[Out]

1/16*(8*a^4+36*a^2*b^2+5*b^4)*x-1/60*a*(4*a^4-121*a^2*b^2-128*b^4)*sin(d*x+c)/b/d-1/240*(8*a^4-178*a^2*b^2-75*
b^4)*cos(d*x+c)*sin(d*x+c)/d-1/120*a*(4*a^2-53*b^2)*(a+b*cos(d*x+c))^2*sin(d*x+c)/b/d-1/120*(4*a^2-25*b^2)*(a+
b*cos(d*x+c))^3*sin(d*x+c)/b/d-1/30*a*(a+b*cos(d*x+c))^4*sin(d*x+c)/b/d+1/6*(a+b*cos(d*x+c))^5*sin(d*x+c)/b/d

________________________________________________________________________________________

Rubi [A]  time = 0.32, antiderivative size = 235, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 3, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {2791, 2753, 2734} \[ -\frac {a \left (-121 a^2 b^2+4 a^4-128 b^4\right ) \sin (c+d x)}{60 b d}-\frac {\left (4 a^2-25 b^2\right ) \sin (c+d x) (a+b \cos (c+d x))^3}{120 b d}-\frac {a \left (4 a^2-53 b^2\right ) \sin (c+d x) (a+b \cos (c+d x))^2}{120 b d}-\frac {\left (-178 a^2 b^2+8 a^4-75 b^4\right ) \sin (c+d x) \cos (c+d x)}{240 d}+\frac {1}{16} x \left (36 a^2 b^2+8 a^4+5 b^4\right )+\frac {\sin (c+d x) (a+b \cos (c+d x))^5}{6 b d}-\frac {a \sin (c+d x) (a+b \cos (c+d x))^4}{30 b d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*(a + b*Cos[c + d*x])^4,x]

[Out]

((8*a^4 + 36*a^2*b^2 + 5*b^4)*x)/16 - (a*(4*a^4 - 121*a^2*b^2 - 128*b^4)*Sin[c + d*x])/(60*b*d) - ((8*a^4 - 17
8*a^2*b^2 - 75*b^4)*Cos[c + d*x]*Sin[c + d*x])/(240*d) - (a*(4*a^2 - 53*b^2)*(a + b*Cos[c + d*x])^2*Sin[c + d*
x])/(120*b*d) - ((4*a^2 - 25*b^2)*(a + b*Cos[c + d*x])^3*Sin[c + d*x])/(120*b*d) - (a*(a + b*Cos[c + d*x])^4*S
in[c + d*x])/(30*b*d) + ((a + b*Cos[c + d*x])^5*Sin[c + d*x])/(6*b*d)

Rule 2734

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[((2*a*c
+ b*d)*x)/2, x] + (-Simp[((b*c + a*d)*Cos[e + f*x])/f, x] - Simp[(b*d*Cos[e + f*x]*Sin[e + f*x])/(2*f), x]) /;
 FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0]

Rule 2753

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(d
*Cos[e + f*x]*(a + b*Sin[e + f*x])^m)/(f*(m + 1)), x] + Dist[1/(m + 1), Int[(a + b*Sin[e + f*x])^(m - 1)*Simp[
b*d*m + a*c*(m + 1) + (a*d*m + b*c*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*
c - a*d, 0] && NeQ[a^2 - b^2, 0] && GtQ[m, 0] && IntegerQ[2*m]

Rule 2791

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> -Simp[
(d^2*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*(m + 2)), Int[(a + b*Sin[e + f*x
])^m*Simp[b*(d^2*(m + 1) + c^2*(m + 2)) - d*(a*d - 2*b*c*(m + 2))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c,
d, e, f, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] &&  !LtQ[m, -1]

Rubi steps

\begin {align*} \int \cos ^2(c+d x) (a+b \cos (c+d x))^4 \, dx &=\frac {(a+b \cos (c+d x))^5 \sin (c+d x)}{6 b d}+\frac {\int (5 b-a \cos (c+d x)) (a+b \cos (c+d x))^4 \, dx}{6 b}\\ &=-\frac {a (a+b \cos (c+d x))^4 \sin (c+d x)}{30 b d}+\frac {(a+b \cos (c+d x))^5 \sin (c+d x)}{6 b d}+\frac {\int (a+b \cos (c+d x))^3 \left (21 a b-\left (4 a^2-25 b^2\right ) \cos (c+d x)\right ) \, dx}{30 b}\\ &=-\frac {\left (4 a^2-25 b^2\right ) (a+b \cos (c+d x))^3 \sin (c+d x)}{120 b d}-\frac {a (a+b \cos (c+d x))^4 \sin (c+d x)}{30 b d}+\frac {(a+b \cos (c+d x))^5 \sin (c+d x)}{6 b d}+\frac {\int (a+b \cos (c+d x))^2 \left (3 b \left (24 a^2+25 b^2\right )-3 a \left (4 a^2-53 b^2\right ) \cos (c+d x)\right ) \, dx}{120 b}\\ &=-\frac {a \left (4 a^2-53 b^2\right ) (a+b \cos (c+d x))^2 \sin (c+d x)}{120 b d}-\frac {\left (4 a^2-25 b^2\right ) (a+b \cos (c+d x))^3 \sin (c+d x)}{120 b d}-\frac {a (a+b \cos (c+d x))^4 \sin (c+d x)}{30 b d}+\frac {(a+b \cos (c+d x))^5 \sin (c+d x)}{6 b d}+\frac {\int (a+b \cos (c+d x)) \left (3 a b \left (64 a^2+181 b^2\right )-3 \left (8 a^4-178 a^2 b^2-75 b^4\right ) \cos (c+d x)\right ) \, dx}{360 b}\\ &=\frac {1}{16} \left (8 a^4+36 a^2 b^2+5 b^4\right ) x-\frac {a \left (4 a^4-121 a^2 b^2-128 b^4\right ) \sin (c+d x)}{60 b d}-\frac {\left (8 a^4-178 a^2 b^2-75 b^4\right ) \cos (c+d x) \sin (c+d x)}{240 d}-\frac {a \left (4 a^2-53 b^2\right ) (a+b \cos (c+d x))^2 \sin (c+d x)}{120 b d}-\frac {\left (4 a^2-25 b^2\right ) (a+b \cos (c+d x))^3 \sin (c+d x)}{120 b d}-\frac {a (a+b \cos (c+d x))^4 \sin (c+d x)}{30 b d}+\frac {(a+b \cos (c+d x))^5 \sin (c+d x)}{6 b d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.44, size = 156, normalized size = 0.66 \[ \frac {45 b^2 \left (4 a^2+b^2\right ) \sin (4 (c+d x))+480 a b \left (6 a^2+5 b^2\right ) \sin (c+d x)+80 a b \left (4 a^2+5 b^2\right ) \sin (3 (c+d x))+60 \left (8 a^4+36 a^2 b^2+5 b^4\right ) (c+d x)+15 \left (16 a^4+96 a^2 b^2+15 b^4\right ) \sin (2 (c+d x))+48 a b^3 \sin (5 (c+d x))+5 b^4 \sin (6 (c+d x))}{960 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2*(a + b*Cos[c + d*x])^4,x]

[Out]

(60*(8*a^4 + 36*a^2*b^2 + 5*b^4)*(c + d*x) + 480*a*b*(6*a^2 + 5*b^2)*Sin[c + d*x] + 15*(16*a^4 + 96*a^2*b^2 +
15*b^4)*Sin[2*(c + d*x)] + 80*a*b*(4*a^2 + 5*b^2)*Sin[3*(c + d*x)] + 45*b^2*(4*a^2 + b^2)*Sin[4*(c + d*x)] + 4
8*a*b^3*Sin[5*(c + d*x)] + 5*b^4*Sin[6*(c + d*x)])/(960*d)

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 150, normalized size = 0.64 \[ \frac {15 \, {\left (8 \, a^{4} + 36 \, a^{2} b^{2} + 5 \, b^{4}\right )} d x + {\left (40 \, b^{4} \cos \left (d x + c\right )^{5} + 192 \, a b^{3} \cos \left (d x + c\right )^{4} + 640 \, a^{3} b + 512 \, a b^{3} + 10 \, {\left (36 \, a^{2} b^{2} + 5 \, b^{4}\right )} \cos \left (d x + c\right )^{3} + 64 \, {\left (5 \, a^{3} b + 4 \, a b^{3}\right )} \cos \left (d x + c\right )^{2} + 15 \, {\left (8 \, a^{4} + 36 \, a^{2} b^{2} + 5 \, b^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{240 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+b*cos(d*x+c))^4,x, algorithm="fricas")

[Out]

1/240*(15*(8*a^4 + 36*a^2*b^2 + 5*b^4)*d*x + (40*b^4*cos(d*x + c)^5 + 192*a*b^3*cos(d*x + c)^4 + 640*a^3*b + 5
12*a*b^3 + 10*(36*a^2*b^2 + 5*b^4)*cos(d*x + c)^3 + 64*(5*a^3*b + 4*a*b^3)*cos(d*x + c)^2 + 15*(8*a^4 + 36*a^2
*b^2 + 5*b^4)*cos(d*x + c))*sin(d*x + c))/d

________________________________________________________________________________________

giac [A]  time = 0.60, size = 168, normalized size = 0.71 \[ \frac {b^{4} \sin \left (6 \, d x + 6 \, c\right )}{192 \, d} + \frac {a b^{3} \sin \left (5 \, d x + 5 \, c\right )}{20 \, d} + \frac {1}{16} \, {\left (8 \, a^{4} + 36 \, a^{2} b^{2} + 5 \, b^{4}\right )} x + \frac {3 \, {\left (4 \, a^{2} b^{2} + b^{4}\right )} \sin \left (4 \, d x + 4 \, c\right )}{64 \, d} + \frac {{\left (4 \, a^{3} b + 5 \, a b^{3}\right )} \sin \left (3 \, d x + 3 \, c\right )}{12 \, d} + \frac {{\left (16 \, a^{4} + 96 \, a^{2} b^{2} + 15 \, b^{4}\right )} \sin \left (2 \, d x + 2 \, c\right )}{64 \, d} + \frac {{\left (6 \, a^{3} b + 5 \, a b^{3}\right )} \sin \left (d x + c\right )}{2 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+b*cos(d*x+c))^4,x, algorithm="giac")

[Out]

1/192*b^4*sin(6*d*x + 6*c)/d + 1/20*a*b^3*sin(5*d*x + 5*c)/d + 1/16*(8*a^4 + 36*a^2*b^2 + 5*b^4)*x + 3/64*(4*a
^2*b^2 + b^4)*sin(4*d*x + 4*c)/d + 1/12*(4*a^3*b + 5*a*b^3)*sin(3*d*x + 3*c)/d + 1/64*(16*a^4 + 96*a^2*b^2 + 1
5*b^4)*sin(2*d*x + 2*c)/d + 1/2*(6*a^3*b + 5*a*b^3)*sin(d*x + c)/d

________________________________________________________________________________________

maple [A]  time = 0.05, size = 174, normalized size = 0.74 \[ \frac {b^{4} \left (\frac {\left (\cos ^{5}\left (d x +c \right )+\frac {5 \left (\cos ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \cos \left (d x +c \right )}{8}\right ) \sin \left (d x +c \right )}{6}+\frac {5 d x}{16}+\frac {5 c}{16}\right )+\frac {4 a \,b^{3} \left (\frac {8}{3}+\cos ^{4}\left (d x +c \right )+\frac {4 \left (\cos ^{2}\left (d x +c \right )\right )}{3}\right ) \sin \left (d x +c \right )}{5}+6 a^{2} b^{2} \left (\frac {\left (\cos ^{3}\left (d x +c \right )+\frac {3 \cos \left (d x +c \right )}{2}\right ) \sin \left (d x +c \right )}{4}+\frac {3 d x}{8}+\frac {3 c}{8}\right )+\frac {4 a^{3} b \left (2+\cos ^{2}\left (d x +c \right )\right ) \sin \left (d x +c \right )}{3}+a^{4} \left (\frac {\cos \left (d x +c \right ) \sin \left (d x +c \right )}{2}+\frac {d x}{2}+\frac {c}{2}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*(a+b*cos(d*x+c))^4,x)

[Out]

1/d*(b^4*(1/6*(cos(d*x+c)^5+5/4*cos(d*x+c)^3+15/8*cos(d*x+c))*sin(d*x+c)+5/16*d*x+5/16*c)+4/5*a*b^3*(8/3+cos(d
*x+c)^4+4/3*cos(d*x+c)^2)*sin(d*x+c)+6*a^2*b^2*(1/4*(cos(d*x+c)^3+3/2*cos(d*x+c))*sin(d*x+c)+3/8*d*x+3/8*c)+4/
3*a^3*b*(2+cos(d*x+c)^2)*sin(d*x+c)+a^4*(1/2*cos(d*x+c)*sin(d*x+c)+1/2*d*x+1/2*c))

________________________________________________________________________________________

maxima [A]  time = 0.58, size = 170, normalized size = 0.72 \[ \frac {240 \, {\left (2 \, d x + 2 \, c + \sin \left (2 \, d x + 2 \, c\right )\right )} a^{4} - 1280 \, {\left (\sin \left (d x + c\right )^{3} - 3 \, \sin \left (d x + c\right )\right )} a^{3} b + 180 \, {\left (12 \, d x + 12 \, c + \sin \left (4 \, d x + 4 \, c\right ) + 8 \, \sin \left (2 \, d x + 2 \, c\right )\right )} a^{2} b^{2} + 256 \, {\left (3 \, \sin \left (d x + c\right )^{5} - 10 \, \sin \left (d x + c\right )^{3} + 15 \, \sin \left (d x + c\right )\right )} a b^{3} - 5 \, {\left (4 \, \sin \left (2 \, d x + 2 \, c\right )^{3} - 60 \, d x - 60 \, c - 9 \, \sin \left (4 \, d x + 4 \, c\right ) - 48 \, \sin \left (2 \, d x + 2 \, c\right )\right )} b^{4}}{960 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*(a+b*cos(d*x+c))^4,x, algorithm="maxima")

[Out]

1/960*(240*(2*d*x + 2*c + sin(2*d*x + 2*c))*a^4 - 1280*(sin(d*x + c)^3 - 3*sin(d*x + c))*a^3*b + 180*(12*d*x +
 12*c + sin(4*d*x + 4*c) + 8*sin(2*d*x + 2*c))*a^2*b^2 + 256*(3*sin(d*x + c)^5 - 10*sin(d*x + c)^3 + 15*sin(d*
x + c))*a*b^3 - 5*(4*sin(2*d*x + 2*c)^3 - 60*d*x - 60*c - 9*sin(4*d*x + 4*c) - 48*sin(2*d*x + 2*c))*b^4)/d

________________________________________________________________________________________

mupad [B]  time = 0.84, size = 214, normalized size = 0.91 \[ \frac {a^4\,x}{2}+\frac {5\,b^4\,x}{16}+\frac {9\,a^2\,b^2\,x}{4}+\frac {a^4\,\sin \left (2\,c+2\,d\,x\right )}{4\,d}+\frac {15\,b^4\,\sin \left (2\,c+2\,d\,x\right )}{64\,d}+\frac {3\,b^4\,\sin \left (4\,c+4\,d\,x\right )}{64\,d}+\frac {b^4\,\sin \left (6\,c+6\,d\,x\right )}{192\,d}+\frac {5\,a\,b^3\,\sin \left (3\,c+3\,d\,x\right )}{12\,d}+\frac {a^3\,b\,\sin \left (3\,c+3\,d\,x\right )}{3\,d}+\frac {a\,b^3\,\sin \left (5\,c+5\,d\,x\right )}{20\,d}+\frac {3\,a^2\,b^2\,\sin \left (2\,c+2\,d\,x\right )}{2\,d}+\frac {3\,a^2\,b^2\,\sin \left (4\,c+4\,d\,x\right )}{16\,d}+\frac {5\,a\,b^3\,\sin \left (c+d\,x\right )}{2\,d}+\frac {3\,a^3\,b\,\sin \left (c+d\,x\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^2*(a + b*cos(c + d*x))^4,x)

[Out]

(a^4*x)/2 + (5*b^4*x)/16 + (9*a^2*b^2*x)/4 + (a^4*sin(2*c + 2*d*x))/(4*d) + (15*b^4*sin(2*c + 2*d*x))/(64*d) +
 (3*b^4*sin(4*c + 4*d*x))/(64*d) + (b^4*sin(6*c + 6*d*x))/(192*d) + (5*a*b^3*sin(3*c + 3*d*x))/(12*d) + (a^3*b
*sin(3*c + 3*d*x))/(3*d) + (a*b^3*sin(5*c + 5*d*x))/(20*d) + (3*a^2*b^2*sin(2*c + 2*d*x))/(2*d) + (3*a^2*b^2*s
in(4*c + 4*d*x))/(16*d) + (5*a*b^3*sin(c + d*x))/(2*d) + (3*a^3*b*sin(c + d*x))/d

________________________________________________________________________________________

sympy [A]  time = 4.02, size = 459, normalized size = 1.95 \[ \begin {cases} \frac {a^{4} x \sin ^{2}{\left (c + d x \right )}}{2} + \frac {a^{4} x \cos ^{2}{\left (c + d x \right )}}{2} + \frac {a^{4} \sin {\left (c + d x \right )} \cos {\left (c + d x \right )}}{2 d} + \frac {8 a^{3} b \sin ^{3}{\left (c + d x \right )}}{3 d} + \frac {4 a^{3} b \sin {\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{d} + \frac {9 a^{2} b^{2} x \sin ^{4}{\left (c + d x \right )}}{4} + \frac {9 a^{2} b^{2} x \sin ^{2}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{2} + \frac {9 a^{2} b^{2} x \cos ^{4}{\left (c + d x \right )}}{4} + \frac {9 a^{2} b^{2} \sin ^{3}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{4 d} + \frac {15 a^{2} b^{2} \sin {\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{4 d} + \frac {32 a b^{3} \sin ^{5}{\left (c + d x \right )}}{15 d} + \frac {16 a b^{3} \sin ^{3}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{3 d} + \frac {4 a b^{3} \sin {\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{d} + \frac {5 b^{4} x \sin ^{6}{\left (c + d x \right )}}{16} + \frac {15 b^{4} x \sin ^{4}{\left (c + d x \right )} \cos ^{2}{\left (c + d x \right )}}{16} + \frac {15 b^{4} x \sin ^{2}{\left (c + d x \right )} \cos ^{4}{\left (c + d x \right )}}{16} + \frac {5 b^{4} x \cos ^{6}{\left (c + d x \right )}}{16} + \frac {5 b^{4} \sin ^{5}{\left (c + d x \right )} \cos {\left (c + d x \right )}}{16 d} + \frac {5 b^{4} \sin ^{3}{\left (c + d x \right )} \cos ^{3}{\left (c + d x \right )}}{6 d} + \frac {11 b^{4} \sin {\left (c + d x \right )} \cos ^{5}{\left (c + d x \right )}}{16 d} & \text {for}\: d \neq 0 \\x \left (a + b \cos {\relax (c )}\right )^{4} \cos ^{2}{\relax (c )} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*(a+b*cos(d*x+c))**4,x)

[Out]

Piecewise((a**4*x*sin(c + d*x)**2/2 + a**4*x*cos(c + d*x)**2/2 + a**4*sin(c + d*x)*cos(c + d*x)/(2*d) + 8*a**3
*b*sin(c + d*x)**3/(3*d) + 4*a**3*b*sin(c + d*x)*cos(c + d*x)**2/d + 9*a**2*b**2*x*sin(c + d*x)**4/4 + 9*a**2*
b**2*x*sin(c + d*x)**2*cos(c + d*x)**2/2 + 9*a**2*b**2*x*cos(c + d*x)**4/4 + 9*a**2*b**2*sin(c + d*x)**3*cos(c
 + d*x)/(4*d) + 15*a**2*b**2*sin(c + d*x)*cos(c + d*x)**3/(4*d) + 32*a*b**3*sin(c + d*x)**5/(15*d) + 16*a*b**3
*sin(c + d*x)**3*cos(c + d*x)**2/(3*d) + 4*a*b**3*sin(c + d*x)*cos(c + d*x)**4/d + 5*b**4*x*sin(c + d*x)**6/16
 + 15*b**4*x*sin(c + d*x)**4*cos(c + d*x)**2/16 + 15*b**4*x*sin(c + d*x)**2*cos(c + d*x)**4/16 + 5*b**4*x*cos(
c + d*x)**6/16 + 5*b**4*sin(c + d*x)**5*cos(c + d*x)/(16*d) + 5*b**4*sin(c + d*x)**3*cos(c + d*x)**3/(6*d) + 1
1*b**4*sin(c + d*x)*cos(c + d*x)**5/(16*d), Ne(d, 0)), (x*(a + b*cos(c))**4*cos(c)**2, True))

________________________________________________________________________________________